

Tribhuvan University
Institute of Science and Technology
M.A. / M.Sc. Entrance Examination with answer sheet (Mathematics)
2080

Time: 2 Hours

Full Marks: 100

Attempt 100 questions (from 1 to 90) and remaining 10 (from 91 to 100 either Mechanics or Linear Programming). 1×100

Tick (✓) the best alternatives.

1. What point is lie on the line $-3x + 7y = 21$?

- (a) $(-4, 3)$
- (b) $(7, 6)$
- (c) $(1, 3)$
- (d) $(-7, 6)$

Ans: b

2. Which vector is the linear combination of the vectors $(4, 2, 7)$ and $(3, 1, 4)$?

- (a) $(-1, 3, 7)$
- (b) $(1, -3, 7)$
- (c) $(1, 3, -7)$
- (d) $(-1, -3, 7)$

Ans: a

3. The span of the set consisting of standard unit vectors in \mathbb{R}^2 is

- (a) $((-1, 0), (0, 1))$
- (b) $(0, 1), (0, -1)$
- (c) $(1, 0), (0, 0)$
- (d) $(1, 0), (0, 1)$.

Ans: d

4. If $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ is a linear transformation for which $T(1, 1) = 3, T(0, 1) = -2$, then the value of $T(1, \frac{1}{2})$ is

- (a) -4
- (b) 3
- (c) 4
- (d) -3

Ans: c

5. For square matrices A and B of same order n , and a scalar k , which is true?

- (a) $\text{tr}(AB) = \text{tr}(AB)$
- (b) $\text{tr}(AB) = \text{tr}(BA)$
- (c) $\text{tr}(kAB) = 2\text{tr}(AB)$

(d) $\text{tr}(kAB) = k \text{ tr}(AB)$

Ans: b

6. What is the area of the triangle whose vertices are $(4, 7)$, $(-2, 1)$ and $(12, -6)$?

- (a) 23
- (b) -23
- (c) 64
- (d) 46

Ans: a

7. What is the coordinate of the vector $(1, 0)$ in \mathbb{R}^2 with respect to the basis vectors $(1, 2)$ and $(1, -1)$ are

- (a) $(\frac{1}{3}, \frac{2}{3})$
- (b) $(\frac{1}{2}, \frac{2}{3})$
- (c) $(\frac{1}{3}, 1)$
- (d) $(-\frac{1}{3}, \frac{2}{3})$

Ans: a

8. Where is used the application of the eigenvalues and eigenvectors of a square matrix?

- (a) Electrical and mechanical engineering
- (b) Communication
- (c) Designing bridges
- (d) All of above

Ans: d

9. Which is the correct formula if u and v are orthogonal?

- (a) $\|u - v\|^2 = \|u\|^2 - 2 \langle u, v \rangle + \|v\|^2$
- (b) $\|u - v\|^2 = \|u\|^2 + 2 \langle u, v \rangle + \|v\|^2$
- (c) $\|u - v\|^2 = \|u\|^2 + \|v\|^2$
- (d) $\|u - v\|^2 = \|u\|^2 - \|v\|^2$

Ans: c

10. The LU factorization of the matrix $\begin{bmatrix} 2 & 5 \\ 6 & -7 \end{bmatrix}$ is

- (a) $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} -2 & 5 \\ 0 & -22 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 0 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & -22 \end{bmatrix}$
- (c) $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & 22 \end{bmatrix}$
- (d) $\begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & -22 \end{bmatrix}$

Ans: d

11. Which map ϕ is an isomorphism?

- (a) $(\mathbb{Z}, +)$ with $(\mathbb{Z}, +)$ where $\phi(x) = 2x$ for $x \in \mathbb{Z}$
- (b) $(\mathbb{Q}, +)$ with $(\mathbb{Q}, +)$ where $\phi(x) = \frac{1}{2}x$ for $x \in \mathbb{Q}$
- (c) $(M_2\mathbb{R}, .)$ with $(\mathbb{R}, .)$ where $\phi(A)$ is the determinant of the matrix A.
- (d) $(\mathbb{Q}, .)$ with $(\mathbb{Q}, .)$ where $\phi(x) = x^2$ for $x \in \mathbb{Q}$

Ans: b

12. What is the order of $(8, 4, 10)$ in the group $\mathbb{Z}_{12} \times \mathbb{Z}_{60} \times \mathbb{Z}_{24}$?

- (a) 60
- (b) 40
- (c) 20
- (d) 320

Ans: a

13. What is the order of the group $\frac{\mathbb{Z}_3 \times \mathbb{Z}_5}{(\{0\} \times \mathbb{Z}_5)}$?

- (a) 7
- (b) 5
- (c) 3
- (d) 1

Ans: c

14. Which of the following map $\phi : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is not a ring homomorphism?

- (a) $\phi_1(m, n) = 0$
- (b) $\phi_2(n, m) = n$
- (c) $\phi_3(n, m) = m$
- (d) $\phi_4(n, m) = n + m$

Ans: d

15. Which is the kernel of the homomorphism $\phi : \mathbb{Z} \rightarrow \mathbb{Z}_6$ defined by $f(n) = [n]$

- (a) \mathbb{Z}
- (b) $5\mathbb{Z}$
- (c) $6\mathbb{Z}$
- (d) $[n]\mathbb{Z}$.

Ans: c

16. What is the degree of $\sqrt{2 - \sqrt{-5}}$ over the rational number \mathbb{Q} in the field?

- (a) 2
- (b) 3
- (c) 4
- (d) 6.

Ans: c

17. From the following isomorphism which is the second isomorphism theorem in the group G where H , K and N are normal subgroup of G ?

- (a) $\frac{G}{H} \cong \frac{\frac{G}{K}}{\frac{H}{K}}$
- (b) $\frac{G}{K} \cong G'$
- (c) $\frac{HN}{N} \cong \frac{H}{H \cap N}$
- (d) All of above.

Ans: c

18. If the polynomial $p(x) = x^3 + 3x + 2$ is irreducible in $\mathbb{Z}[x]$, then $\frac{\mathbb{Z}_5}{\langle x^3 + 3x + 2 \rangle}$ is a

- (a) Group
- (b) Ring
- (c) Field
- (d) Group and field.

Ans: c

19. What is the equation of lowest degree with rational coefficient, one of the whose roots is $\sqrt{3} - \sqrt{2}$?

- (a) $x^4 - 10x^2 + 1 = 0$
- (b) $x^4 + 10x^2 + 1 = 0$
- (c) $x^4 + 10x^2 - 1 = 0$
- (d) $x^4 - 10x^2 - 1 = 0$.

Ans: a

20. If α, β, γ be the roots of the equation $x^3 + qx + r = 0$, then which is the correct?

- (a) $(\beta - \gamma)(\gamma - \alpha)(\alpha - \beta)$
- (b) $(\beta - \gamma)^2(\gamma - \alpha)^2(\alpha - \beta)^2$
- (c) $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$
- (d) $(\beta + \gamma)^2(\gamma + \alpha)^2(\alpha + \beta)^2$

Ans: b

21. $+\infty$ and $-\infty$ are

- (a) Numbers
- (b) Symbols
- (c) Both of them
- (d) None of them

Ans: b

22. Every superset of an infinite set is

- (a) Infinite

- (b) Finite
- (c) Rational
- (d) None of them

Ans: a

23. The subset $\{1, 2, 3, 4, 5, 6\}$ of \mathbb{R} is

- (a) Open
- (b) Both open and closed
- (c) Closed
- (d) Empty

Ans: c

24. Let F be an open covering of closed and bounded set A in \mathbb{R}^n . Then there is a finite sub collection of F which also covers A is the statement of the theorem

- (a) Bolzano Wierstrass theorem
- (b) Cantor intersection theorem
- (c) Lindelof covering theorem
- (d) Heine Borel covering theorem

Ans: d

25. What is the limit points of the sequence $\{1, 2, 3, 4 \dots\}$?

- (a) 1
- (b) 2
- (c) 0
- (d) No

Ans: d

26. What are the two roots of the function $g(x) = x^2 - 2x - 15$ in the interval $(1,7)$ by using Intermediate value theorem ?

- (a) 0, 1
- (b) 1, 2
- (c) 3, 5
- (d) 2, 4

Ans: b

27. Let f and g are each function of bounded variation on $[a, b]$ then $V_{f,g}$ is equals to

- (a) $> AV_f + BV_g$
- (b) $\leq AV_f + BV_g$
- (c) $\geq V_f + V_g$
- (d) $< AV_f + BV_g$

Ans: b

28. The value of $\int_0^\pi x d(\sin x) dx$ is

- (a) 1
- (b) -3
- (c) -2
- (d) -1

Ans: c

29. If $P = \{0, \frac{1}{3}, \frac{1}{2}, \frac{3}{4}, 1\}$ is the partition of $[0, 1]$ then what is the value of Δx_3 ?

- (a) $\frac{1}{4}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{6}$

Ans: c

30. Let $\{a_n\}$ be a sequence of real numbers then which one is true ?

- (a) $\liminf_{n \rightarrow \infty} \{a_n\} \geq \limsup_{n \rightarrow \infty} \{a_n\}$
- (b) $\liminf_{n \rightarrow \infty} \{a_n\} \geq \liminf_{n \rightarrow \infty} \{a_n\}$
- (c) $\liminf_{n \rightarrow \infty} \{a_n\} \leq \limsup_{n \rightarrow \infty} \{a_n\}$
- (d) $\liminf_{n \rightarrow \infty} \{a_n\} \leq \limsup_{n \rightarrow \infty} \{a_n\}$

Ans: c

31. A sequence of continuous functions with a discontinuous limit function is defined by $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$, $x \in \mathbb{R}$, $n = 1, 2, 3, \dots$. If $|x_n| < 1$, the value of $\lim_{n \rightarrow \infty} f_n(x)$ is

- (a) $\frac{1}{4}$
- (b) $\frac{1}{2}$
- (c) 1
- (d) 0

Ans: d

32. $\int_a^\infty \frac{\sin x}{x^p} dx$ is convergent for all $x \geq a > 0$ and p is

- (a) < 0
- (b) > 0
- (c) > 1
- (d) < 1

Ans: b

33. A statement "I wear my running shoes if and only if I am exercising" is an

- (a) Conditional
- (b) Tautology
- (c) Bi-conditional
- (d) Contradiction

Ans: c

34. Let $f : S \rightarrow T$ be a function, where S and T are two sets. If $X \subseteq S$ and $Y \subseteq T$, then $X = f^{-1}(Y)$ implies

- (a) $f(X) \subseteq Y$
- (b) $f(Y) \subseteq X$
- (c) $f^{-1}(X) = Y$
- (d) None of them

Ans: a

35. The value of $\lim_{x \rightarrow 0} (\sin x + \cos x)^{\cot x}$ is

- (a) e^{-1}
- (b) 1
- (c) ∞
- (d) e

Ans: d

36. If a function f is continuous on $[a, b]$ then there exist a number $c \in [a, b]$ such that $\int_a^b f(x) dx = f(c)(b - a)$ is the statement of

- (a) Second mean value theorem of integral calculus
- (b) First mean value theorem of integral calculus
- (c) Fundamental theorem of integral calculus
- (d) Generalized mean value theorem of integral calculus

Ans: b

37. Let f be a continuous function on $[a, b]$. If $f(a)$ and $f(b)$ have opposite signs, then there exist $c \in (a, b) : f(c) = 0$ is the statement of

- (a) Heine theorem
- (b) Intermediate value theorem
- (c) Bolzano theorem
- (d) None of them

Ans: c

38. If $\sum |a_n|$ converges and $\{b_n\}$ bounded then $\sum a_n b_n$ is

- (a) Bounded
- (b) Divergent
- (c) Oscillatory
- (d) Convergent

Ans: d

39. If an increasing sequence is bounded above, then it converges to the

- (a) Supremum
- (b) Infimum

- (c) Neither supremum nor infimum
- (d) Monotonically increasing function

Ans: a

40. If $0 < a < 1$ and $A = \{a^n : n \in \mathbb{N}\}$, then A has infimum and $\inf A$ equals to

- (a) 3
- (b) 2
- (c) 1
- (d) 0

Ans: d

41. The value of $\lim_{x \rightarrow 0} \frac{\ln(\tan x)}{\ln x}$ is

- (a) 0
- (b) 1
- (c) 3
- (d) -1

Ans: b

42. The maximum value of $\sin x + \cos x$ is

- (a) 1
- (b) 2
- (c) $\sqrt{2}$
- (d) 0

Ans: c

43. If $f(x) = x^2 - 1$ and $g(x) = \sqrt{x}$ then the value of $(fog)(x)$ is

- (a) $x + 1$
- (b) $x - 1$
- (c) $\sqrt{x^2 - 1}$
- (d) $x^4 - 2x^2$.

Ans: b

44. Given that $1 - \frac{x^2}{4} \leq f(x) \leq 1 + \frac{x^2}{2}$ for all $x \neq 0$. The value of $\lim_{x \rightarrow 0} f(x)$ is equal to

- (a) 0
- (b) -1
- (c) 1
- (d) Does not exist.

Ans: c

45. If $y = x^n$, where n is a positive integer then the value of $(n+1)^{th}$ derivative of y is

- (a) nx^{n-1}
- (b) $n!$

(c) $(n + 1)!$
 (d) 0

Ans: d

46. The domain of the function $f(x) = \frac{x^2}{\sqrt{x+1}}$ is

(a) $(-\infty, \infty)$
 (b) $(0, \infty)$
 (c) $(-1, 1)$
 (d) $(-1, \infty)$

Ans: d

47. The horizontal asymptote to the curve $y = \frac{x^2}{x^2 + 1}$ is

(a) $y = -1$
 (b) $x = -1$
 (c) $y = 1$
 (d) $x = 1$

Ans: c

48. If $f(x, y) = x^2 + 3xy + y - 1$ then the value of $f_x(4, -5)$ is

(a) -7
 (b) 13
 (c) 7
 (d) -13

Ans: a

49. The equation of tangent to the curve $x^2 + y^2 = 25$ at the point $(3, -4)$ is

(a) $3x - 4y = 5$
 (b) $3x - 4y = 25$
 (c) $4x + 3y = 0$
 (d) $4x - 3y = 0$

Ans: b

50. The derivative of x^x with respect to x is

(a) $x^x(1 + \ln x)$
 (b) x^x
 (c) $x^x \ln x$
 (d) 0

Ans: a

51. $\int_{-a}^a f(x)dx = 0$

(a) For every function $f(x)$

- (b) When $f(x)$ is an even function
- (c) When $f(x)$ is an odd function
- (d) When $f(x)$ is continuous

Ans: c

52. The value of $\int_{-1}^1 \frac{1}{x^2} dx$ is

- (a) -2
- (b) 2
- (c) 0
- (d) The integral doesn't exist

Ans: d

53. Which of the following is not true?

- (a) $\Gamma(\frac{1}{2}) = \frac{\sqrt{\pi}}{2}$
- (b) $\Gamma(1) = 1$
- (c) $\Gamma(n+1) = n\Gamma(n)$
- (d) $\Gamma(n+1) = n!$, when n is a positive integer

Ans: a

54. The value of $\int_0^{\frac{\pi}{4}} \sin^2 x dx$ is

- (a) $-\frac{1}{2}$
- (b) $\frac{1}{2}$
- (c) $\frac{\pi}{4} - \frac{1}{4}$
- (d) $\frac{\pi}{8} - \frac{1}{4}$

Ans: d

55. The value of $\int_0^{\infty} e^{-x^2} dx$ is

- (a) $\sqrt{\pi}$
- (b) $\frac{\sqrt{\pi}}{2}$
- (c) 1
- (d) $\frac{1}{2}$

Ans: b

56. The plane area bounded by the curve $r = f(\theta)$, vectorial angles $\theta = \alpha$ and $\theta = \beta$ is

- (a) $\int_{\alpha}^{\beta} \int_0^{f(\theta)} r^2 dr d\theta$
- (b) $\frac{1}{2} \int_{\alpha}^{\beta} \int_0^{f(\theta)} r dr d\theta$

(c) $\int_{\alpha}^{\beta} \int_0^{f(\theta)} r \, dr \, d\theta$

(d) $\frac{1}{2} \int_{\alpha}^{\beta} \int_0^{f(\theta)} r^2 \, dr \, d\theta$

Ans: c

57. The value of $\Gamma(\frac{1}{4})\Gamma(\frac{3}{4})$

(a) $\sqrt{2}\pi$

(b) $\sqrt{\pi}$

(c) $\sqrt{2}$

(d) $\frac{\sqrt{\pi}}{2}$

Ans: a

58. The value of $\int_1^{\infty} \frac{1}{\sqrt{x}} \, dx$ is

(a) -2

(b) 2

(c) 0

(d) The integral doesn't exist

Ans: d

59. The value of $\int_0^{\pi} \int_0^x \sin y \, dy \, dx$ is

(a) π

(b) 2π

(c) $-\pi$

(d) 0

Ans: b

60. The integral $\int_0^a f(a-x)dx$ is equivalent to

(a) $\int_0^a f(a-t) \, dt$

(b) $\int_0^a f(x) \, dx$

(c) $-\int_a^0 f(x) \, dx$

(d) All of the above

Ans: d

61. The general solution of the ODE $y \, dy = -x \, dx$ represents

(a) Family of ellipses

(b) Family of intersecting circles

(c) Family of concentric circles

(d) Family of parabolas

Ans: c

62. A solution of the differential equation $\frac{dy}{dx} = -y$ can not be

- (a) A polynomial function
- (b) A trigonometric function
- (c) A logarithmic function
- (d) All of the above

Ans: d

63. The Direction field is also known as

- (a) Slope field
- (b) Vector field
- (c) Both (a) and (b)
- (d) Scalar field

Ans: c

64. The process of describing or translating physical phenomenon (Real world situation) into the mathematical formulations is known as

- (a) Numerical method
- (b) Mathematical Modeling
- (c) Mathematical Solution
- (d) Physical interpretation

Ans: b

65. For the ODE, $\frac{dy}{dt} = y(y - 1)(y - 2)$, $y \geq 0$, the equilibrium solution $y = 1$ is

- (a) Asymptotically stable
- (b) Stable but not asymptotically stable
- (c) Semi-stable
- (d) Unstable

Ans: a

66. In the Runge-Kutta method, the operations on linear and non-linear ODEs are

- (a) Different
- (b) Identical
- (c) Differ by mean 1, 2
- (d) Differ by weight 2, 4

Ans: b

67. Sufficient condition for the existence and uniqueness of the IVP: $y' = f(t, y)$, $y(t_0) = y_0$ is

- (a) Only f continuous
- (b) Only $\frac{\partial f}{\partial y}$ continuous

- (c) Both f and $\frac{\partial f}{\partial y}$ continuous
- (d) Both f and $\frac{\partial f}{\partial y}$ discontinuous

Ans: c

68. If the damped system is described by ODE $m u'' + \gamma u' + k u = 0$, and $\gamma^2 = 4m k$, then the motion is

- (a) Underdamped
- (b) Undamped
- (c) Overdamped
- (d) Critically damped

Ans: d

69. Laplace's equation $u_{xx} + u_{yy} = 0$ is

- (a) Quadratic equation
- (b) Parabolic equation
- (c) Elliptic equation
- (d) Hyperbolic equation

Ans: c

70. The longest interval in which the given IVP: $(x-3) y'' + x y' + (\ln |x|) y = 0$, $y(1) = 0$, $y'(1) = 1$ is certain to have a unique twice-differentiable solution.

- (a) $(-\infty, \infty)$
- (b) $(0, 3)$
- (c) $(-\infty, 3) \cup (0, \infty)$
- (d) $(0, \infty)$

Ans: b

71. The equation of a straight line which cuts off an intercept 3 from the y - axis and makes an angle of 60^0 with x -axis is

- (a) $y + \sqrt{3}x = 3$
- (b) $y - \sqrt{3}x = 3$
- (c) $y + \sqrt{3}x = 4$
- (d) $y - \sqrt{3}x = 4$

Ans: a

72. The condition of three points (x_1, y_1) , (x_2, y_2) , and (x_3, y_3) lie on the locus of the straight line is

- (a) $x_1y_2 + x_2y_1 + x_2y_3 + x_3y_2 + x_3y_1 + x_1y_3 = 0$
- (b) $x_1y_2 + x_2y_1 - x_2y_3 + x_3y_2 + x_3y_1 - x_1y_3 = 0$
- (c) $x_1y_2 - x_2y_1 + x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3 = 0$
- (d) $x_1y_2 + x_2y_1 - x_2y_3 - x_3y_2 + x_3y_1 - x_1y_3 = 0$

Ans: c

73. The slope of the line passing through the point (x_1, y_1) and (x_2, y_2) is

- (a) $\frac{y_2 + y_1}{x_2 + x_1}$
- (b) $\frac{y_2 + y_1}{x_2 - x_1}$
- (c) $\frac{y_2 - y_1}{x_2 + x_1}$
- (d) $\frac{y_2 - y_1}{x_2 - x_1}$

Ans: d

74. The acute angle between the lines $2x + 3y = 4$ and $x + 2y = 3$ is

- (a) $\tan^{-1} \frac{1}{4}$
- (b) $\tan^{-1} \frac{1}{5}$
- (c) $\tan^{-1} \frac{1}{6}$
- (d) $\tan^{-1} \frac{1}{8}$

Ans: d

75. The length of perpendicular drawn from the point $(4, -7)$ upon the straight line passing through the origin and the point of intersection of the lines $2x - 3y + 14 = 0$ and $5x + 4y - 7 = 0$ is

- (a) 5
- (b) 1
- (c) 3
- (d) 4

Ans: b

76. The equation of the tangent at the point (x_1, y_1) of the parabola $y^2 = 4ax$ is

- (a) $yy_1 = 4a(x + x_1)$
- (b) $yy_1 = 2a(x + x_1)$
- (c) $yy_1 = 3a(x + x_1)$
- (d) $yy_1 = a(x + x_1)$

Ans: b

77. The equation of the tangent at a given (x_1, y_1) of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is

- (a) $\frac{x^2 x_1}{a^2} - \frac{y^2 y_1}{b^2} = 1$
- (b) $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$
- (c) $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$
- (d) $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 2ab$

Ans: c

78. If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of a straight line then which one of the following is true?

- (a) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$
- (b) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 0$
- (c) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 1$
- (d) $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 0$

Ans: a

79. The equation of the plane passing through the points $(0, 1, 1), (1, 1, 2)$ and $(-1, 2, -2)$ is

- (a) $4x + 2y - 3z + 16 = 0$
- (b) $5x - 2y - 3z - 20 = 0$
- (c) $6x + 5y - 3z - 19 = 0$
- (d) $x - 2y - z + 3 = 0$

Ans: d

80. The equation of the plane, which is at a distance 7 units from the origin and the direction ratios of the normal to the plane being $(1, 2, -1)$ is

- (a) $2x + 2y - 3z = 7$
- (b) $3x + 2y + z = 7\sqrt{3}$
- (c) $x + 2y - z = 7\sqrt{6}$
- (d) $5x + 2y + 3z = 7\sqrt{5}$

Ans: c

81. The equation of the plane passing through the points $(-1, 1, 1), (1, -1, 1)$ and the perpendicular to the plane is $x + 2y + 2z = 0$ is

- (a) $8x + 2y + 2z + 4 = 0$ or $x - 6y - z + 2 = 0$
- (b) $14x - 7y + 7z = 0$ or $2x - y + x = 0$
- (c) $9x + 12y - 2z + 4 = 0$ or $2x - y + x = 0$
- (d) $4x + 6y - z + 2 = 0$

Ans: b

82. The equation of the tangent plane at $(-1, 4, -2)$ of the sphere is

- (a) $2x + 2y - 3z = 7$
- (b) $2x - 2y + z + 12 = 0$
- (c) $x + 2y - z = 8\sqrt{6}$
- (d) $5x + 2y + 3z = 10$

Ans: b

83. The equation of the plane of contact of a point $P(x_1, y_1, z_1)$ with respect to sphere $x^2 + y^2 + z^2 = r^2$ is

- (a) $xx_1 - yy_1 - zz_1 = r^2$
- (b) $xx_1 + yy_1 + zz_1 + r^2 = 0$
- (c) $xx_1 + yy_1 + zz_1 = r^2$

(d) $xx_1 + yy_1 + zz_1 = 0$

Ans: c

84. The Equation of the cylinder whose generators are $x = -\frac{y}{2} = \frac{z}{3}$ and whose guiding curve is the ellipse $x^2 + 2y^2 = 1, z = 0$ is

- (a) $xy \pm yx \pm zx = 0$
- (b) $xx_1 \pm yy_1 \pm zz_1 = r^2$
- (c) $xx_1 + yy_1 + zz_1 + r^2 = 0$
- (d) $xy \pm yx \pm zx = xyz$

Ans: b

85. If one considers only the magnitude and direction of a vector, such a vector is said to be a

- (a) Position vector.
- (b) Sliding vector.
- (c) Free vector.
- (d) Localised vector.

Ans: c

86. A cube has four diagonals, connecting opposite vertices. The angle between an adjacent pair is

- (a) $\cos \frac{1}{3}$.
- (b) $\sin^{-1} \frac{1}{3}$.
- (c) $\cos^{-1} \frac{1}{\sqrt{3}}$.
- (d) $\cos^{-1} \frac{1}{3}$.

Ans: d

87. The equation of a vector line is given by $\vec{r} = \vec{a} + \lambda \vec{b}$. The vector \vec{b} is termed as

- (a) The direction vector.
- (b) The position vector.
- (c) The localised vector.
- (d) The free vector.

Ans: a

88. For the path $y = x^n$, the integral $\int_{(0,0)}^{(1,1)} (y^2 x \, dx + y x^2 \, dy)$ equals

- (a) $\frac{n}{2}$.
- (b) $\frac{1}{n}$.
- (c) $\frac{1}{4}$.
- (d) $\frac{1}{2}$.

Ans: d

89. The value of the integral $\int_S \vec{a} \cdot d\vec{S}$, where $\vec{a} = z^3 \hat{k}$ and S is the sphere of radius r with the centre origin is

- (a) $\frac{\pi r^5}{5}$.
- (b) $\frac{2\pi r^5}{5}$.
- (c) $\frac{3\pi r^5}{5}$.
- (d) $\frac{4\pi r^5}{5}$.

Ans: d

90. Let $U = r^2$, $r^2 = x^2 + y^2 + z^2$, the Laplacian of U , $\nabla^2 U$ is

- (a) 2
- (b) 4
- (c) 6
- (d) 8

Ans: c

Attempt either from Mechanics or Linear Programming.

Mechanics

91. The force in a string connecting two particles has a tendency to bring the particles together is called

- (a) Tension.
- (b) Thrust.
- (c) Buoyancy.
- (d) Reaction.

Ans a

92. The magnitude of the resultant force R of the two perpendicular forces P and Q is

- (a) $\sqrt{P^2 - Q^2}$.
- (b) $\sqrt{P + Q}$.
- (c) $\sqrt{P^2 + Q^2}$.
- (d) $P^2 + Q^2$.

Ans c

93. The necessary and sufficient conditions for the equilibrium of coplanar and concurrent forces are

- (a) The resultant or their resolved parts along two perpendicular directions are zero.
- (b) The resultant and their resolved parts along two non-perpendicular directions are zero.

- (c) The resultant but not their resolved parts along two perpendicular directions are zero.
- (d) The resultant and their resolved parts along two perpendicular directions are zero.

Ans d

94. The virtual work done by the tension of an inextensible string is

- (a) Negative.
- (b) Positive.
- (c) Zero.
- (d) Not fixed.

Ans c

95. The centre of gravity of a uniform triangular area lies at

- (a) The point where the medians meet.
- (b) One vertex.
- (c) The mid point of a side.
- (d) The incentre.

Ans a

96. If a point moves along a circle, its angular velocity about any point on the circle is ... of that about the centre.

- (a) $\frac{2}{3}$
- (b) $\frac{1}{3}$
- (c) $\frac{3}{2}$
- (d) $\frac{1}{2}$

Ans b

97. The number n of complete oscillations in one second is given by

- (a) $\frac{1}{T-1}$.
- (b) $\frac{1}{T}$.
- (c) $\frac{1}{\sqrt{T}}$.
- (d) $\frac{1}{T+1}$.

Ans b

98. The force exerted due to the surface of contact of an object perpendicular to the surface is said to be

- (a) Normal contact force.
- (b) Total contact force.
- (c) Resolved force.
- (d) Component force.

Ans a

99. An object is said to be in-extensible which

- (a) Varies with time.
- (b) Varies with length.
- (c) Does not vary with time.
- (d) Does not vary with length.

Ans d

100. Which is not an equation of catenary?

- (a) $s = c \tan \psi$
- (b) $y^2 = c^2 + s^2$
- (c) $y = c \cos \psi$
- (d) $y = c \cosh \frac{x}{c}$

Ans c**Linear Programming**

91 A linear programming formulation requires

- (a) The objective function should be linear
- (b) The constraints should be linear
- (c) Either (a) or (b) holds
- (d) Both (a) and (b) must hold

Ans: d

92 Consider the linear programming problem $\min\{c'x \mid Ax = b, x \geq 0, x \in R^n\}$. Then

- (a) Every basic solution to this problem is a basic feasible solution
- (b) Every basic feasible solution to this problem is a basic solution
- (c) There is no relation between basic feasible solution and basic solution
- (d) Every basic solution is an optimal solution

Ans: b

93 The simplex algorithm is efficient to solve

- (a) A linear programming problem
- (b) A non-linear programming problem
- (c) Neither of (a) and (b)
- (d) Both cases (a) and (b)

Ans: a

94 Let a primal linear programming problem P and its dual D be given. Then

- (a) The dual problem D is also linear
- (b) Dual of D is a linear programming problem P

- (c) Both statements (a) and (b) are correct
- (d) Both statements (a) and (b) are false

Ans: c

95 An optimal solution to a linear programming problem is guaranteed

- (a) In the set of its all extreme vertices
- (b) In the complement set of its all extreme vertices
- (c) Outside of the bounded polytope
- (d) None of the (a-c) is a correct statement

Ans: a

96 While forming a linear programming problem, the free variable $x \in R^n$ may appear in the type of formulation

- (a) The general form of LP
- (b) The canonical form of LP
- (c) The standard form of LP
- (d) In all of the above (a-c)

Ans: a

97 Let a linear programming problem LP: $\max\{c'x \mid Ax = b, x \geq 0, x \in R^n\}$ be restricted to the integer programming problem IP: $\max\{c'x \mid Ax = b, x \geq 0, x \in Z^n\}$. Then it holds

- (a) The optimal solution of IP is greater than or equal to the optimal solution of LP
- (b) The optimal solution of LP is greater than or equal to the optimal solution of IP
- (c) The optimal solution of LP must be equal to the optimal solution of IP
- (d) The optimal solution of LP must not be equal to the optimal solution of IP

Ans: b

98 Consider the general linear programming problem to be minimized where the equality constraints appear. Then the correct statement is

- (a) In the dual formulation the corresponding variable must be negative
- (b) In the dual formulation the corresponding variable must be positive
- (c) In the dual formulation the corresponding variable is free
- (d) In the dual formulation the corresponding variable does not exist

Ans: c

99 Given a single-source s single-sink d network $N = (s, d, V, A, b)$, where V and A represent the nodes and arcs, respectively, and b capacity on arcs, the maximum flow problem with flow function $f : A \rightarrow R^{\geq 0}$ does not fulfill the condition

- (a) The flow conservation constraints
- (b) The capacity constraints
- (c) Flow non-negativity constraint
- (d) Flow negativity constraint

Ans: d

100 Given a $s - d$ network $N = (s, d, V, A, b, c)$ with flow bound $b \geq 0$ and the cost $c \geq 0$ on the arcs, then the min-cost flow problem requires

- (a) To find a feasible $s - d$ flow of variable value v_o that has minimum cost
- (b) To find a feasible $s - d$ flow of fixed value v_o that has maximum cost
- (c) To find a feasible $s - d$ flow of variable value v that has maximum cost
- (d) To find a feasible $s - d$ flow of fixed value v_o that has minimum cost

Ans: d